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Objectives of this study are:

instrumented across its vast oceanic interior. The Pacific Array
(Fig. 1) addresses this gap through a multinational deployment of

'/ Oldest-2 array (Fig. 3) specifically targets ~160 Ma lithosphere
- east of Guam, providing critical constraints on the long-term

Funded <o evolution of oceanic lithosphere-asthenosphere systems. ©)
Figure 1. Pacific Array seismic network showing the |\ ), PR ekl <

location of the Oldest-2 study area (red circle). Image from
https://eri-ndc.eri.u-tokyo.ac.jp/PacificArray/index.html

(BBOBSs) deployed in the Oldest-2 array. Two

instrument types were used: Taiwan's IES design (left) and [

Japan's

(a) Tilt noise
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-
)

(b) Compliance noise

Figure 4. BBOBS noise mechanisms:
(a) tilt noise; (b) compliance noise.
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ERI design (right).

Vertical (Z) components of OBS recordings are affected

by two noise mechanisms (Fig. 4): tilt noise resulting

from poor instrument-seafloor coupling and ocean

currents, and compliance noise generated by long-
> Bottomcurrent P€ri0d infragravity waves that deform the seafloor.
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Figure 5. Example of noise correction effectiveness on OBS Z

component data. Raw waveform (gray) compared with corrected signal
(red) showing improved data quality.

Following noise correction (processed by Isse-san using

Tilt noise primarily affects horizontal and Kawano et al,, 2023 methodology), Z component data
vertical components; compliance noise quality improves substantially (Fig. 5), enabling accurate

affects pressure and vertical components.

Surface-wave

period signals arriving earlier than short-period ones. This
dispersion shows that wave velocity varies with period. By

Rayleigh wave dispersion analysis.

We selected 120 high-quality events (Figure 6) with:

@® Time: 2022/09/23 to 2023/10/05
@ Magnitude: Mw =2 5.5

® Depth: < 50km

@ Distance: 30°to 120 °

dispersion (Fig. 7) is generally observed as long-
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Figure 6. Distribution of
teleseismic events used.
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Figure 7. Filtered records showing surface- Figure 8. Phase velocity measurement
wave dispersion. Long-period signals (e.g., 80s) concept. Phase velocity determined by tracking

arrive earlier,
arrive later.

while short-period signals (e.g., 20s) wave peaks across stations. Slope of arrival time
versus distance yields phase velocity.

Phase velocities were quantified using cross-correlation analysis (Fig. 9) between
station pairs (Jin & Gaherty, 2015). Lag times, combined with epicentral distance
differences, provide estimates of phase velocity dispersion (Fig. 10).
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seismic array data analysis.

Quantify spatial variations in wave ™"
velocity across the study area to identify

subsurface heterogeneities.

Determine directional anisotropy by
measuring wave speeds along multiple
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Rayleigh Wave Dispersion Analysis Using Broadband
wpzsess (Ocean Bottom Seismic Array from the Oldest Pacific Plate
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Figure 3. Bathymetric map of the Oldest-2 seismic array in the northwest Pacific Ocean.
Seismograph locations: Taiwan IES instruments (hexagons), Japan ERI instruments (circles). Geological features:
seafloor age contours (black lines), large igneous provinces (red dashed lines), fracture zones (white lines).

Phase velocities and azimuthal anisotropy are simultaneously inverted using least-

squares fitting to the functional form: c(8) = ¢

anisotropy magnitude.
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Figure 11. Isotropic phase velocity maps.
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Figure 12. Azimuthal anisotropy maps.

Phase velocity tomography yields isotropic maps showing smooth and coherent velocity
patterns across the Oldest-2 region (Fig. 11). Subsequent anisotropy analysis (Fig.12)
shows that fast directions at short periods (20-60 s) are sub-parallel to the absolute plate
motion (APM, 288°), suggesting combined influences from both APM and fossil spreading
directions (FSD). At intermediate periods (~108 s), the fast direction aligns with APM and
anisotropy strength reaches its maximum. At the longest periods (2140 s), sampling the

distinct deformation regime at depth.

[sotropic phase velocity dispersion
curves from raw seismic (LRZ),
noise-corrected seismic (LCZ), and
pressure (LDH) data  show
consistent patterns. The dispersion
curves demonstrate that Oldest-2
has slower velocities than Oldest-1
(170 Ma) lithosphere (Fig. 13). This
confirms that seismic velocities
increase with plate age.
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deeper asthenosphere, the fast direction rotates to nearly north-south, indicating a
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Figure 13. Isotropic phase velocity dispersion for Oldest-2.
Comparison with Oldest-1 (Kawano et al., 2023) and older Pacific
lithosphere models (Nishimura & Forsyth, 1989).

® Broadband OBS data from the Oldest-2 array provide new constraints on
Rayleigh wave dispersion beneath ~160 Ma Pacific lithosphere.

® Anisotropy analysis shows systematic depth variations: short periods
(20-60s) indicate combined plate motion and fossil spreading influences,
intermediate periods (~108s) show maximum anisotropy aligned with
absolute plate motion, while long periods (=2140s) reveal north-south fast
directions and weakening anisotropy at the base of the asthenosphere,
demonstrating depth-dependent deformation mechanisms.

® Dispersion analysis confirms that seismic velocities increase with plate
age, demonstrating progressive strengthening of Pacific lithosphere.

® Future work will invert dispersion curves for 1-D shear velocity models
and expand anisotropy analysis to better constrain fast direction
variations and quantify deformation strength with depth.
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