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What is tremor and why it is important?
• Tectonic tremor is long-lasted, noise-like signals that represents the 

slow slip process at depth. 

• It is usually identified with consistent arrivals of weak energy at several 

stations.
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Questions
• Can we detect tremor by using a single station?

à machine learning approach to classify tremor from noise   

and local earthquake (Liu et al., 2019).

• Can this technique be applied to continuous data? 

• How the single-station classification method can be scaled to 

larger data sets in continuous data?
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Continuous data  from 3 stations :
ELD & STY & WTP
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Station
Tremor 
events

(number)

Non-tremor
events

(number)
Days Duration 

(second)

ELD 489 11342 8 8598

STY 240 11424 8 4251

WTP 567 11317 8 10058

Training data for this study: 

• We use 8 days data (selected from the tremor catalog during the 
study period of 2016/2/19~2016/9/10) to build our training data. 



Method --Extracting 29 Seismic features

Temporal waveforms (1st family)

Spectral content (2nd family)

Energy concentration in frequency and time (3rd family)

• Number of peaks in the curve showing the temporal evolution of the DFTs maximum
• Number of peaks in the curve showing the temporal evolution of the DFTs mean
• Ratio between sum of energy in 2-8Hz and sum of energy in 5-20Hz

• Maximum envelope amplitude
• Kurtosis of the envelope
• Skewness of the envelope

• Energy in the first third part of the autocorrelation function
• maximum amplitude of 2-8 Hz
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Method --Building training model

• k-Nearest Neighbor Classification (Cover and Hart, 1967)
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Method --Analysis
• We use Fisher Scores to analyze the classification result.

The closer the data get and the wider the blank between two class of events is, the 
higher the Fisher Scores will be, which is related to better classification result.
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Station ELD STY WTP

Tremor Non-
tremor

Tremor Non-
tremor

Tremor Non-
tremor

Tremor 284 11547 112 11552 313 11571

Non-
tremor

679 11152 344 11320 787 11097

TPR 58.1 46.7 55.2

CR 96.7 98.0 96.0

Confusion matrix of each station :

Results

True Positive rate (TPR)

• How many of the input events are “predicted” as their actual class ?

CR (Classification Rate)

• One metric for evaluating classification models. Informally, CR is the 
fraction of predictions our model got right.

Actual

Predicted



• #9:  Energy in the first third part of the autocorrelation function

• #24: Number of peaks in the curve showing the temporal 

• evolution of the DFTs mean

• #23: Number of peaks in the curve showing the temporal 

• evolution of the DFTs maximum

Station     #Feature The top
fisher score

ELD #9 0.11

STY #24 0.10
WTP #23 0.21

The most efficient feature is #23

The most efficient feature is #24The most efficient feature is #9
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Summary 

1) The k-NN based classification tool allows the discrimination between 

tremors and noise with 49-58% true positive rate(TPR). Increasing 

the number of tremor may improve the true positive rate. 

2) The top ranked features are different between stations, suggesting 

strong variation of path and site effects.

3) To further improve the discrimination between tremor and non-

tremor events, more seismic data and stations can be introduced in 

the training model.  
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