Impact of Temperature Extremes on the Excessive Mortality Rate from Cardiovascular Diseases of Elderly in Taipei: From Health Warning System to Potential Climate Change Impact Assessment

(極端溫度對大台北地區老年人心血管疾病死亡率增加的影響: 從健康預警系統到氣候變遷的影響潛勢評估)

Supervisors: Prof. Cheng-Ta Chen, Prof Li-Shan Tseng

Adviser: Prof. Yu-Chun Wang

Student: Shi-Pei Hsu

13 September, 2011

ESSSP 2011 Meteorology Shi-Pei Hsu

Presentation Outline

Introduction

Methods & Results

Summary

Part 1: Finding thresholds and constructing health warning system

Part 2: Sustained anomalous temperature

Part 3: Distribution of mortality in anomalous cold and hot events

Part 4: Assessment of climate change and its impact

Background: Rey et al. (2007)

Introduction

Introduction

- Exposure to anomalous hot/ cold temperature =>
 - excessive deaths, especially the elderly.
- Ability to maintain temperature balance $\downarrow =>$ risk of death $\uparrow =>$ death
- The cardiovascular disease of the elderly in Taipei metropolitan(Taipei City+ New Taipei City)

Introduction

ESSSP 2011 Meteorology Shi-Pei Hsu

• Separated into 4 parts:

Part 1: Finding **thresholds** and constructing **health warning system**

Part 2: Sustained(continuing) anomalous temperature

Part 3: Distribution of mortality in **anomalous** cold and hot events

Part 4: Assessment of climate change and its impact

ESSSP 2011 Meteorology Shi-Pei Hsu

Methods & Results

Methods & results

Data (from 1981 to 2006)

 ✓ Daily population and deaths due to cardiovascular disease of the elderly in Taipei

✓ Daily maximum and minimum temperatures at Taipei station

ESSSP 2011 Meteorology Shi-Pei Hsu

Anomalous hot/ cold temperature <=> excessive deaths?

★ Consider the contribution of long-term trend and seasonal cycle to mortality ratio as "common condition" (as expected)

Part 1: Finding thresholds and constructing health warning system

• Methods

 ✓ Put mortality anomaly ratio into different temperature bins to produce boxplot (inclueds mean T, Tmin, and Tmax)

✓ Apply Mann-Whitney test (two ratio dstrb.)to find thresholds

✓ Construct a threshold-based health warning system

ESSSP 2011 Meteorology Shi-Pei Hsu

• **Results- Mean temperature** (calculated from yesterday's Tmax and today's Tmin)

Mann-Whitney test :

Mean daily temperature

✓ Upper threshold: 30° C (p=0.033<0.05). Excessive deaths per year: ~42 people

✓ Lower threshold: 12° C (p=0.048<0.05). Excessive deaths per year: ~82 people

Results- Yesterday's maximum temperature

Mann-Whitney test :

temperature

✓ Upper threshold: 36° C (p=0.0002<0.05). Excessive deaths per year: ~128 people

Lower threshold: 16° C (p=0.01<0.05). Excessive deaths per year: ~33 people \checkmark

✓ Upper threshold: 26° C (p=0.002<0.05). Excessive deaths per year: ~44 people

✓ Lower threshold: 7°C (p=0.033<0.05). Excessive deaths per year: ~132 people

• Results- Health warning system

	Upper threshold	Lower threshold
Mean temperature	30°C	$12^{\circ}C$
Yesterday's maximum temperature	36°C	16° C
Today's minimum temperature	26°C	7°C

✓ To prevent from being sick or even dead

Part 2: Sustained(continuing) anomalous temperature

- Methods
 - \checkmark Analysis on sustained cold condition isn't available.
 - ✓ Sustained hot condition: ✓ Sustain for: 1day to 5 days
 - ✓ Example: Sustained for 3 days under T> $30^{\circ}C$

Increase % of
median from
expected

mortality rate

	>28° C	>29°C	>30° C	>31°C	>32° C
1day	+1.4%	+2.2%	+3.8%	+8.4%	+22.4%
2days	+1.3%	+2.3%	+4.2%	+8.6%	+16.7%
3days	+1.9%	+2.5%	+4.7%	+7.7%	+17.3%
4days	+2.0%	+2.5%	+5.4%	+8.6%	+16.1%
5days	+1.8%	+2.2%	+5.8%	+10.0%	+12.6%

Part 3: Distribution of mortality in anomalous cold and hot events

(From 1981 to 2006)
 ✓ Pick up the day with highest and lowest mean T in each

year \rightarrow day 0 ("0 day"), ratio is known

✓ -10 days to +30 days

XX=(Mean T, ratio)

		-10 days	-9 days	••••	0 day	••••	+28 days	+29 days	+30 days
	1981	XX	XX		XX		XX	XX	XX
26	1982	XX	XX		XX		XX	XX	XX
years									
	2006	XX	XX		XX		XX	XX	XX
Composite Distribution of mortality in cold and hot events									

Methods & results Part 3

ESSSP 2011 Meteorology Shi-Pei Hsu

Mean temperature profile

- Thresholds of mean T: $30^{\circ}C$ and $12^{\circ}C$
- Hot events: 46% of days, mean T> 30°C (19/41)
- Cold events:5% of days, mean T< 12° C (2/41)

0.8

Methods & results

14

ESSSP 2011 Meteorology

- 1. Ratio already >1 before "0 day" (which means highest T)
- 2. Max ratio lags behind max mean T for ~ 2 or 3 days
- 3. Ratio still >1 after highest T for ~7 days, but decreasing
- 4. Ratio remained <1 (~a week after highest T) for ~7 days
- 5. Ratio ~1

1. T already passed threshold($\,30^{\circ}C$) before highest T

2. (a) Regulation system needs some time to react (b) Good health service

3. (a)T remained high (b)Health condition varies with different people

4. *Displacement effect* (just a little): Advancement of mortality, rather than additional mortality, i.e. they died earlier as expected.

5. T falls below threshold($30^{\circ}C$)

0.8

- 1. Ratio <1 before "0 day" (which means anomalous T)
- 2. (a) Ratio begins to rise when T gets anomalous cold(b) Max ratio lags behind min T for ~3 days
- 3. Ratio still >1 for ~10 days even when T went optimum, but decreasing
- 4. Ratio ~1
- 5. Displacement effect (just a little)

- 1. Under optimum T
- 2. (a) Regulation system needs some time to react (b) Good health service
- 3. Health condition varies with different people
- 4. T went moderate for some days
- 5. Displacement effect (just a little): They died earlier as expected

Part 4: Assessment of climate change and its impact

• Goal: Under impact of climate change, estimate excessive deaths

- ✓ Present climate: Pct of 30° C : ~87th => ~13% chance of T>30 <u>~47 days/year</u>
- ✓ Future climate: Pct of 30° C : ~69th => ~31% chance of T>30 <u>~113 days/year</u>

Ν	Aethods & results Part 4				ES	SSP 2011 Meteorology Climate change u
	Results	+ population 个				
	model ID	Pct of 30C	Chance of T >30	Days of T>30 per year	Additional days of T>30 per year	Excess deaths per year
	bccr_bcm2_0	0.72	0.28	102	55	274
	cccma_cgcm3_1_t6 3	0.695	0.305	111	64	298
	cnrm_cm3	0.71	0.29	106	58	283
	csiro_mk3_0	0.743	0.257	94	46	251
	csiro_mk3_5	0.693	0.307	112	65	300
	gfdl_cm2_0	0.662	0.338	123	76	330
	gfdl_cm2_1	0.664	0.336	123	75	328
	iap_fgoals1_0_g	0.725	0.275	100	53	269
	ingv_echam4	0.723	0.277	101	54	271
	miroc3_2_hires	0.622	0.378	138	91	370
	miroc3_2_medres	0.664	0.336	123	75	328
	mpi_echam5	0.666	0.334	122	74	327
	mri_cgcm2_3_2a	0.69	0.31	113	66	303
	Average	0.691				303

Methods & results

Part 4 Climate change VS Growth of pop. Pop 2010: ~646500 Pop 2090: ~1946500 ESSSP 2011 Meteorology Shi-Pei Hsu

Condition	Present(2010)	Future (2080-2100)				
Consider	(For all, if T>30)	Only population 个	Only climate change	Climate change + population 个		
	42	127	91	274		
	42	127	99	298		
	42	127	94	283		
	42	127	83	251		
	42	127	100	300		
	42	127	110	330		
Excessive	42	127	109	328		
deaths per	42	127	89	269		
year	42	127	90	271		
	42	127	123	370		
	42	127	109	328		
	42	127	108	327		
	42	127	101	303		
Average	42	127	100	303		

ESSSP 2011 Meteorology Shi-Pei Hsu

Summary

Part 1: Finding thresholds and constructing health warning system

	Upper threshold	Lower threshold
Mean temperature	30°C	$12^{\circ}C$
Yesterday's maximum temperature	36°C	16° C
Today's minimum temperature	26°C	7°C

- ✓ These are the thresholds we've found, if temperature reaches these thresholds, mortality rate increases significantly (in statistics).
- ✓ When predicted temperature reaches the thresholds above, health warning system is responsible to give warning to the elderly before anomalous temperature occurs.

Shi-Pei Hsu

Part 2: Sustained(continuing) anomalous temperature

Excessive		>28°C	> 29° C	> 30° C	>31°C	> 32° C
deaths per	1 day	+16	+26	+44	+97	+260
vear in present	2days	+15	+27	+49	+100	+194
climate	3days	+22	+29	+54	+89	+201
(people)	4days	+23	+29	+63	+100	+187
N 1 /	5days	+21	+26	+67	+116	+146

✓ For the same threshold, the excessive deaths increases with sustained days

 Excessive deaths increases substantially when mean temperature reach above threshold, i.e. 30C

Part 3: Distribution of mortality in anomalous cold and hot events

	Annual hot events	Annual cold events
Before	• Ratio >1	• Ratio <1
anomalous T	-2 -1 -0 1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3
During anomalous T	 Ratio begins to rise. Max ratio lags highest T ~2 to 3 days. 	 Ratio begins to rise. Max ratio lags lowest T ~2 to 3 days.
Aftermual cold e	entsRatio remains >1 for ~ 7	 Ratio remains >1 for ~ 10
anomalous T	days	days
Displacement	A little. Occur ~20 days after	A little. Occur ~10 days after
effect 7 -6 -5 -4 -3	anomalous hot T	anomalous cold T

Part 4: Assessment of climate change and its impact

✓ Present climate: Pct of 30° C : ~87th => ~13% chance of T>30 <u>~47 days/year</u>

✓ Future climate: Pct of 30° C : ~69th => ~31% chance of T>30 <u>~113 days/year</u>

Condition	Present(2010)	Future (2080-2100)				
Consider	(For all, if T>30)	Only population 个	Only climate change	Climate change + population 个		
Averaged excess deaths	42	127	100	303		

At the end of this century, excessive deaths per year will be
 7.14 times as large as the one in present due to climate
 change and growth of population of the elderly

✓ Compare the influence of *growth of population* and *climate change*, the former (3.02 times) is larger than the latter (2.38 times)

Reference

- Neville Nicholls, Carol Skinner, Margaret Loughnan, Nigel Tapper (2007) A simple heat alert system for Melbourne, Australia Int J Biometeorol
- S Hajat, R S Kovats, R W Atkinson, A Haines (2002) Impact of hot temperatures on death in London: a time series approach J Epidemiol Community Health 2002;56:367–372
- Reinhard Kaiser, Alain Le Tertre, Joel Schwartz, Carol A. Gotway, W. Randolph Daley, Carol H. Rubin, (2007) The Effect of the 1995 Heat Wave in Chicago on All-Cause and Cause-Specific Mortality American Journal of Public Health Supplement 1, 2007, Vol 97, No. S1
- Maud M.T.E. Huynen, Pim Martens, Dieneke Schram, Matty P. Weijenberg, and Anton E. Kunst (2000) The Impact of Heat Waves and Cold Spells on Mortality Rates in the Dutch Population Environmental Health Perspectives VOLUME 109 NUMBER 5 May 2001
- Gre goire Rey, Eric Jougla, Anne Fouillet, Ge rard Pavillon, Pierre Bessemoulin, Philippe Frayssinet, Jacqueline Clavel, Denis He mon (2007) The impact of major heat waves on allcause and cause-specific mortality in France from 1971 to 2003 Int Arch Occup Environ Health (2007) 80:615–626

ESSSP 2011 Meteorology Shi-Pei Hsu

Thanks for your attention

Time for asking