Effects of Long-term Climate Change on Typhoon Rainfall near Taiwan (Morakot

 Mindulle)

長期氣候變遷對於侵台颱風個案降雨影響之探討 (莫拉克、敏督利)

Supervisor: Prof. Chung-Chieh Wang(王重傑教授) Prof. Li-shan Tseng (曾莉珊教授)

Student: Chien-Chang Huang (黃建彰)

2014/9/16 Earth Sciences Summer Student Program

Contents

- Research Motivation
 Method
 Data Source
- 4. Conclusion

Research Motivation

- Typhoon is a disastrous or extreme weather. For Taiwan, the biggest threat is heavy rainfall of Typhoon.
- In recent years, the accumulated rainfall brought by typhoons have clearly increasing trend, some of the media and the people will be attributed on global warming.
- We want to understand the long-term climate change can have how much influence on the typhoon rainfall.

Rank	Year	Typhoon name	PR (h)	OL (h)	EX (h)	Total duration (h)	Rainfall (mm)	Type of track
1	2009	Morakot	12	15	18	45	8996	CWB 3 (C)
2	2001	Nari	10	51	14	75	8108	CWB Special
3	2008	Sinlaku	16	10	22	48	8105	CWB 2 (N)
4	2005	Haitang	11	9	12	32	5589	CWB 3 (C)
5	1996	Herb	5	7	4	16	4836	CWB 2 (N)
6	1989	Sarah	5	20	13	38	4655	CWB 3 (C)
7	1960	Shirley	3	11	10	24	4637	CWB 2 (N)
8	2007	Krosa	12	1	10	23	3936	CWB 2 (N)
9	2004	Mindulle	16	18	7	41	3856	CWB 6
10	2008	Jangmi	4	13	8	25	3800	CWB 2 (N)
11	2008	Kalmaegi	8	10	5	23	3763	CWB 2 (N)
12	2005	Talim	4	9	4	17	3526	CWB 3 (C)

TABLE 1. The 12 typhoons in 1960–2011 with total rainfall over Taiwan exceeding 3500 mm during the three phases, ranked according to total rainfall amount. The eight since 2004 are highlighted in boldface.

Method

Data Source

Climate average

- National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) monthly-mean global gridded reanalysis data(2.5°×2.5°)
- the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST)data (1.0° x1.0°)

Typhoon data

- NCEP FNL Operational Model Global Tropospheric Analyses data(1.0° x1.0°)
- NOAA Optimum Interpolation (OI) Sea Surface Temperature (SST) V2(1.0° x1.0°)

The contours is temperature and the color bar is humidity. there is a warming and moistening trend of roughly 0.5K and 0.4g/kg at 1000hpa in western pacific region . And figure(b) is the level in 850mb ,the temperature increase about 0.7K and humidity increase 0.3 g/kg.

Upper figure is geopotential height and winds average of 1990 to 2009 at 1000mb. The wind field is dominated by subtropical high.So,the winds field is almost easterly or southeasterly component near Taiwan.

But in the delta value, can find the difference slight increase in westerly or northwesterly wind component near Taiwan. It represent steering flow of subtropical high is weakened.

Case 1 : Morakot

	Configuration	Case1:Morakot
35N 2009 莫拉克 (MORAKOT)	Domain size	800×600×40
	Horizontal grid size	3000m
	Vertical grid size	500m
	Integration length	192 hr (8day)
20 17N 14E 15 15 15 15 15 15 15 15 125 130 8/03 135 138E 140 5 138E 138E 140 5 138E 138E 140 5 138E 138E 140 138E 140 138E 140 138E 140 140 140 140 140 140 140 140	Initial time and end time	2009/8/03 0000UTC ~ 08/11 0000UTC
•	Cloud microphysics	Bulk cold rain scheme

morakot

21N

11[']8E

120E

122E

124E

the radius of 500 km for 3-10 Aug and Mo1,Mo2, their difference (Mo1 - Mo2), and the difference in percent change [%, (Mo1 - Mo2)/Mo1] for Morakot (2009).

500 km	8/03	8/04	8/05	8/06	8/07	8/08	8/09	8/10	8/03~09
Mo1(mm) (Modern)	23.27	23.04	26.23	48.18	80.05	83.81	58.71	16.86	45.02
Mo2(mm) (Past)	21.32	21.23	26.53	46.34	77.53	79.02	54.74	17.18	42.99
Mo1-Mo2	2.12	0.98	1.25	1.22	2.06	4.59	4.46	-0.37	2.03
Percent Change	8.38%	7.89%	-1.15%	3.82%	3.15%	5.71%	6.77%	-1.88%	4.52%

Model areal-mean daily rainfall(mm) inside different radii of 200-500 km from the TC center for the period of 3-10 Aug

	500 km	400 km	300 km	200 km
Mo1 (mm) (Modern)	45.02	54.43	65.68	71.19
Mo2 (mm) (Past)	42.99	52.04	60.17	65.64
Mo1-Mo2	2.034	2.39	5.504	5.553
Percent Change	4.52%	4.39%	8.38%	7.80%

Case 2 : Mindulle

		Case2:Mindulle
2004 敏督利 (MINDULLE) 110 115 120 125 130 135 740 145 35N 35	Domain size	960×840×50
³⁰ ³⁰ ³⁰ ³⁰ ³⁰ ³⁰ ³⁰ ³⁰	Horizontal grid size	3000m
25 07/02 07/01 06/29 6/25 0000UTC	Vertical grid size	500m
	Integration length	216 hr (9day)
1110 110 115 120 120 120 130 135 138 40 145 145 5 5 5 5 5 5 5 5 5 5 5 5 5	Initial time and end time	2004/6/25 0000UTC ~ 7/04 0000UTC
•	Cloud microphysics	Bulk cold rain scheme

mindulle

Wind Speed Max

the radius of 400 km for 25 Jun ~ 3 Jul and Min1,Min2, their difference (Min1 - Min2), and the difference in percent change [%, (Min1 - Min2)/Min1] for Mindulle (2009).

400 km	6/25	6/26	6/27	6/28	6/29	6/30	7/01	7/02	7/03	6/25~7/3
Min1(mm) (Modern)	36.34	56.16	77.00	96.13	89.99	91.06	46.56	40.20	38.58	63.56
Min2(mm) (Past)	39.22	56.36	70.67	92.70	79.17	78.57	43.31	34.06	32.29	58.48
Min1- Min2	-2.88	-0.20	6.34	3.43	10.82	12.49	3.26	6.13	6.28	5.08
Percent Change	-7.92%	-0.35%	8.23%	3.57%	12.02%	13.71%	7.00%	15.26%	16.29%	7.98%

Model areal-mean daily rainfall(mm) inside different radii of 200-500 km from the TC center for the period of 25 Jun ~ 3 Jul

	500 km	400 km	300 km	200 km
Min1 (mm) (Modern)	52.42	63.56	71.56	86.79
Min2 (mm) (Past)	51.93	58.48	70.08	86.21
Min1-Min2	0.488	5.075	1.476	0.583
Percent Change	0.93%	7.98%	2.06%	0.67%

- The simulated track and rainfall are well reproduced for both case.
- According to the long-term change in wind field, we can anticipate that modern-day typhoons might move more easterly and the difference of track is very small. (p.26)
- The long-term climate change in temperature and humidity show that modern-day typhoons might stay in a environment which is more humid and warmer than the past climate.
- Both modern-day typhoon yield more rainfall than their counterpart in past climate(about 4~8%). (p27)

GrADS: COLA/IGES

GrADS: COLA/IGES

	500 km	400 km	300 km	200 km
J1 (mm)	45.975	53.441	63.738	76.930
J2 (mm)	45.242	52.370	59.315	73.537
J1-J2	0.733	1.071	4.423	3.392
Percent Change	1.59%	2.00%	6.94%	4.41%
S1 (mm)	37.43	50.70	71.46	102.46
S2 (mm)	35.03	47.61	67.67	101.07
S1-S2	2.40	3.08	3.78	1.39
Percent Change	6.41%	6.08%	5.29%	1.36%
Mo1 (mm)	45.02	54.43	65.68	71.19
Mo2 (mm)	42.99	52.04	60.17	65.64
Mo1-Mo2	2.034	2.39	5.504	5.553
Percent Change	4.52%	4.39%	8.38%	7.80%
Min1 (mm)	52.42	63.56	71.56	86.79
Min2 (mm)	51.93	58.48	70.08	86.21
Min1-Min2	0.488	5.075	1.476	0.583
Percent Change	0.93%	7.98%	2.06%	0.67%

致謝

感謝王重傑教授與曾莉珊教授的指導並提供了許多改進的 意見。感謝林伯勳學長提供研究所需的資料與指導。感謝指 導我使用CReSS模式與工作站的學長姐們。使得此次暑期研 究得以順利完成。

2014/9/16 Earth Sciences Summer Student Program