An Evaluation of Forecast Performance on Summertime Afternoon storms in Taiwan by the CReSS Model

CReSS模式對臺灣夏季午後陣雨預報能力評估

Student：Nan－Chou Su（蘇南州）
Supervisor：Prof．Chung－Chieh Wang（王重傑）

Purpose

1. To evaluate performance of afternoon storms forecast by CReSS in Taiwan.
2. To evaluate performance of afternoon storms forecast in correct regions (Northern, Central, Southern, Eastern Taiwan) .
3. To evaluate performance of afternoon storms forecast accumulated rainfall in Taiwan.

Data Source

Observation ：

CWB

Daily accumulated rainfall（updated every hour）；
Satellite Visible（or IR）cloud image；
Surface weather map
Forecast：
CReSS【2．5km x 2.5 km 《Grid size 》， 72 hr 《forecast length》】

Hourly rainfall forecast

（0000UTC forecast made two days before ，one day before and on that day．）

Method

1-1. Exclude the days which were affected by a typhoon or front.

1-2. Exclude the rainfall cases caused by clouds that move from the ocean.
2. Record information (including accumulated rainfall, region, starting time) in observation and forecast.
3. Compute statistics and analyze the results.

What does afternoon storms look like

Clouds and rainfall both start from the inland (mountain).
Time it happened : 11~21 o'clock
Threshold of accumulated rainfall : over 10 mm

Affected by typhoon

Affected by front

Affected by clouds moved from the ocean

Categorical statistics \& Skill score

(e)	Observation		
Forecast	Y	N	
	Y	H	
	FA		
	M	CN	

Categorical statistics \& Skill score

Prefigurance (PF)
Post agreement (PA)
Threat score (TS)

Accuracy (ACC)

Bias (BS)

Sample size (number of days)

	2011	2012	$2011 \& 2012$
May	3	4	7
June	11	1	12
July	15	12	27
August	12	4	16
September	5	13	18
October	4	5	9
Total	50	39	89

Subregion of Taiwan

N-Northern
C-Central
S-Southern

E-Eastern

Categorical statistics

(a) In different region

Northern - CN
Central - H
Southern - M
Eastern - CN

(b) In same region

Performance of afternoon storms forecast in correct regions

	D-2	D-1	D 0					$\begin{aligned} & \text { () sample size } \\ & D-2 \end{aligned}$
H	47	44	67					$\square \mathrm{D}-1$ - 0
FA	32	26	25			(92)		(356)
M	81	84	61			$(79)^{(70)}$		
CN	196	202	203 D		(128)		(153)	
PF	0.37	0.34	0.52	0.82			(153)	
PA	0.59	0.63	$\rightarrow 0.73$	0.90			${ }^{(160)}{ }_{(154)}$	
TS	0.29	0.29	0.44	0.75				
ACC	0.68	0.69	$\xrightarrow{+3.76}$	0.80				
BS	0.62	0.55	0.72		PF	PA	TS	ACC

	PF	D-2	D-1	D 0
	Northern	0.19	0.23	0.23
	Central	0.56		0.74
	Southern	0.24	0.16	0.32
	Eastern	0.27	0.27	0.82
	PA	D-2	D-1	D 0
	Northern	0.38	0.60	0.60
	Central	0.77	0.81	0.83
	Southern	0.75	0.50	0.80
	Eastern	0.20	0.25	0.47
	TS	D-2	D-1	D 0
	Northern	0.15	0.20	0.20
	Central	0.48	0.48	0.65
	Southern	0.23	0.14	0.30
	Eastern	0.13	0.15	0.43
	ACC	D-2	D-1	D 0
	Northern	0.67	0.73	0.73
	Central	0.63	0.64	0.75
	Southern	0.65	0.58	0.69
	Eastern	0.78	0.81	0.87

Scatter plot of rainfall

Bias of rainfall

BS	$\mathrm{D}-2$	$\mathrm{D}-1$	D 0
over 2	$4(8.5 \%)$	$5(11.4 \%)$	$10(14.9 \%)$
$\mathbf{0 . 5} \sim 2$	$37(78.7 \%)$	$33(75.0 \%)$	$46(68.7 \%)$
less than $\mathbf{0 . 5}$	$6(12.8 \%)$	$6(13.6 \%)$	$11(16.0 \%)$

Distribution of Bias

Conclusion

> Model forecast of rainfall over entire Taiwan or in sub-regions

1. Forecast made on that day is the best ($\mathrm{TS}=0.75$ or 0.44).
2. Compare PF with PA, if model forecast rainfall occurrence, there is high chance to be correct, but model also misses some rainfall cases.
3. Rainfall occurrence frequency in forecast is lower than in observation.
> Compare four sub-regions
4. Performance in central region is the best, and it also has biggest sample size. 2. In eastern Taiwan, forecast made on that day is much better than those made one day or two days before.
$>$ In rainfall amount
5. Model tends to forecast more rain in events with light rainfall, but increasingly less rainfall in events with heavier rainfall.
6. High percentage of events with BS in the range of 0.5~2 (68.7~78.7\%).
7. When rainfall amount in forecast is close to observation, model tends to forecast a little less rainfall.
