An Evaluation of Forecast Performance on Summertime Afternoon storms in Taiwan by the CReSS Model

CReSS模式對臺灣夏季午後陣雨預報能力評估

Student: Nan-Chou Su (蘇南州)

Supervisor: Prof. Chung-Chieh Wang (王重傑)

Purpose

- 1. To evaluate performance of afternoon storms forecast by CReSS in Taiwan.
- 2. To evaluate performance of afternoon storms forecast in correct regions (Northern, Central, Southern, Eastern Taiwan).
- 3. To evaluate performance of afternoon storms forecast accumulated rainfall in Taiwan.

Data Source

Observation:

CWB

Daily accumulated rainfall (updated every hour);

Satellite Visible (or IR) cloud image;

Surface weather map

Forecast:

CReSS [2.5km x 2.5km (Grid size), 72hr (forecast length)]

Hourly rainfall forecast

(0000UTC forecast made two days before, one day before and on that day.)

Method

- 1-1. Exclude the days which were affected by a typhoon or front.
- 1-2. Exclude the rainfall cases caused by clouds that move from the ocean.
- 2. Record information (including accumulated rainfall, region, starting time) in observation and forecast.
- 3. Compute statistics and analyze the results.

What does afternoon storms look like

Clouds and rainfall both start from the inland (mountain).

Time it happened: 11~21 o'clock

Threshold of accumulated rainfall: over 10mm

Affected by front

Affected by clouds moved from the ocean Rainfall move from coast to inland and starting time is too early. 10/28 00:30 累積雨量圖 No typhoon or from 毫米 (mm) 300 200 150 130 110 135 ABQJ7 (b) 中央氣象局製 (a)

Categorical statistics & Skill score

Categorical statistics & Skill score

Prefigurance (PF)
$$= \frac{H}{H+M}$$
Post agreement (PA)
$$= \frac{H}{H+FA}$$
Threat score (TS)
$$= \frac{H}{H+FA+M}$$
Accuracy (ACC)
$$= \frac{H+FA+M}{H+FA+M+CN}$$
Bias (BS)
$$= \frac{H+FA}{H+M}$$

Sample size (number of days)

	2011	2012	2011&2012
May	3	4	7
June	1 1	1	1 2
July	1 5	1 2	2 7
August	1 2	4	1 6
September	5	1 3	18
October	4	5	9
Total	5 0	3 9	8 9

Performance of afternoon storms forecast by CReSS

score term

forecast made two days before forecast made one day before forecast made on that day

Subregion of Taiwan 26N 25N N-Northern 24.5°N C-Central 24N S-Southern 23.3°N 23N E-Eastern 22N 120.5°E 119E 120E 121E 122E

Categorical statistics Northern - CN Northern - FA Central - H Central Southern - M Southern - M Eastern - CN Eastern - CN (a) In different region (b) In same region

Performance of afternoon storms forecast in correct regions

	D-2	D-1	D 0					() sample size ■ D-2
H	47	44	67					■ D-1 ■ D 0
FA	32	26	25			(92)		(356)
M	81	84	61			(79)		
CN	1 96	202	203		(128)		(152)	
PF	0.37	0.34	0.52	0.82			(153)	
PA	0.59	0.63	0.73	0.90			(160) (154)	
TS	0.29	0.29	0.44	0.75				
ACC	0.68	0.69	0.76	0.80				
BS	0.62	0.55	0.72		PF	PA	TS	ACC

$$ACC = \frac{H + CN}{H + FA + M + CN}$$

Bias of rainfall

BS _e	D -2.	D-1.	D 0.
over 2.	4 (8.5%).	5 (11.4%)	10 (14.9%)
$0.5 \sim 2$	37 (78.7%)	33 (75.0%)	46 (68.7%)
less than 0.5.	6 (12.8%)	6 (13.6%)	11 (16.0%).

Distribution of Bias

Conclusion

- Model forecast of rainfall over entire Taiwan or in sub-regions
- 1. Forecast made on that day is the best (TS = 0.75 or 0.44).
- 2. Compare PF with PA, if model forecast rainfall occurrence, there is high chance to be correct, but model also misses some rainfall cases.
- 3. Rainfall occurrence frequency in forecast is lower than in observation.
- > Compare four sub-regions
- 1. Performance in central region is the best, and it also has biggest sample size.
- 2. In eastern Taiwan, forecast made on that day is much better than those made one day or two days before.
- > In rainfall amount
- 1. Model tends to forecast more rain in events with light rainfall, but increasingly less rainfall in events with heavier rainfall.
- 2. High percentage of events with BS in the range of 0.5~2 (68.7~78.7%).
- 3. When rainfall amount in forecast is close to observation, model tends to forecast a little less rainfall.